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3D data arising from modeling by designers or scanning with depth sensors
has a unique characteristic – it matches the actual physical form of an
object as it presents in the real world. Hence, unlike 2D images containing
a projected view, it directly enables understanding of how the objects are
composed and structured in the physical space. In this paper, I present our
novel methodologies on learning the structure of 3D data from a collection
and various downstream applications based on them. I first illustrate how a
part-based representation of 3D objects, fusing a discrete and combinatorial
global structure with continuous local geometry space, can facilitate creating
and editing shapes by efficiently exploring in the 3D object space. Such
a structural representation is achieved from a co-analysis of 3D shapes,
but the co-analysis generally requires to have correspondence information,
which is expensive and difficult to obtain. I also introduce how different
shapes and information associated with the shapes can be bridged through
neural network training without the supervision of correspondences. Lastly,
I discuss some model fitting problems discovering structure in 3D shapes
and propose a way to combine supervised learning with the best features of
classical optimization for more robust estimation.
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1 INTRODUCTION
My research is concerned with the world of 3D shapes, and espe-
cially 3D geometric data processing and analysis. Such data arise
both in content creation by designers and artists as well as through
sensing the real world by devices such as depth sensors, akin to im-
ages. 3D data is, however, distinguished from other data modalities
by its unique characteristics: First, 3D data is commonly represented
as the surface of a 3D object – and not the volume inside. This is
innately a sparse and irregular representation, unlike images. In
fact, over many decades, a diverse set of representations for 3D data
has been developed: e.g., volume-based octrees, BSPs, and CSGs,
and surface-based splines, meshes, and point clouds. Second, 3D
data is the closest digital representation we have of real objects,
aiming to match their actual physical form. Hence, unlike 2D im-
ages containing a projected view, 3D data enables to understand
the entities as they are composed and structured in the real world.
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Third, 3D geometries (surfaces) are not only data themselves but
also domains wherein other information is defined: e.g., physical
attributes such as texture, material and reflectance, and semantic an-
notations including keypoints and parts associated with labels. Since
the information is defined on independent domains, co-analyzing
it is not possible without bridging one domain to the other — and
this correspondence information is expensive and difficult to ob-
tain. Due to such unique characteristics, conventional tools
for processing or analyzing typical regularly sampled signal
data cannot be directly applied to 3D data. The goal of my
research is to develop novel methodologies specialized in 3D
based upon a profound understanding of its nature.
Over the course of my Ph.D. studies, I have pursued research

aiming to balance between (1) developing fundamental tools, for
instance, discovering structures in 3D and relating 3D shapes in a
collection, and (2) solving more concrete, tangible problems, such
as shape synthesis [2, 4], partial scan completion [2, 3], segmenta-
tion [5, 6], keypoint correspondences [5], and geometric primitives
fitting [1]. The underlying ideas in my research are encapsulated in
the following fundamental themes:

(1) Part-based Structural 3D Representation
3D objects have structure and naturally decompose the ob-
jects into parts that are related by adjacencies, or symmetries
and regularities. The space of 3D objects can thus be effi-
ciently expressed by fusing a discrete, combinatorial global
structure with continuous local geometry spaces. I introduce
the ways to create new shapes from scratch or from a given
partial shape by exploring the joint space with the part-based
representations.

(2) Deep 3D Shape Co-analysis Without Relational Super-
vision
Co-analyzing a set of 3D shapes and their associated infor-
mation generally requires relational information mapping
shapes to each other. Such relational information is however
coarse, inconsistent, and incomplete in most 3D databases. I
propose novel neural network frameworks that can discover
relationships among shapes and their associated information
without the supervision of them.

(3) Supervised Learning for Model Estimation
Several problems on discovering structure in 3D shapes are
formulated as optimization problems with objective functions
that are non-convex and at times ill-posed. Hence existing
solutions suffer from the problem of fine-tuning algorithm pa-
rameters for every input shape. I develop a data-driven frame-
work learning hyper-parameters from supervision, combin-
ing the best features of classical optimization with learning.

In what follows, I illustrate more details of my work and also
elaborate my future goals in each of the above themes.
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Fig. 1. A part structure and symmetries predicted from the input partial
scan data are used to exploit geometry from both symmetry and database
sources and complete the missing area [3].

2 PART-BASED STRUCTURAL 3D REPRESENTATION
Learning a space of data variation is being extensively studied in
diverse domains including image, audio, and language processing,
building on the advances of deep learning techniques. Based on
the understanding of the data space, one can develop an automated
system to synthesize and edit data. Such a system is essential for 3D
shapes since creating a new shape requires high expertise. Genera-
tive models learning the data space in other data domains typically
represent the data distribution with the most fine-grained unit of
the data: pixels in images and waveform samples in audio. Such an
approach is however inappropriate in 3D shapes, for two reasons.
First, most 3D shapes are highly structured and regularized with
symmetries. Second, the variation is often disentangled into local
parts, e.g., wings and fuselage of airplanes. For these reasons, it is
more effective in 3D shapes to represent the variation with
part-based structures associated with global regularities.
I leverage the part-level structure in the problem of partial scan

completion. In the completion, geometries filling the missing areas
can come from either the input data itself (based on symmetries) or
3D models in the database. In my research [3], I introduce a system
that jointly utilizes both sources by predicting a part structure rep-
resented with bounding boxes and global symmetries relating them
to each other (Figure 1). This part-level analysis enables the system
to discover the symmetry patterns even with the presence of severe
missing information and also to borrow geometries from existing
models at the part-level. The other application I also worked on is
part-based shape synthesis. Note that artists mostly create 3D CAD
models as assemblies of components. Hence it is natural to assist
the modeling process by suggesting new parts and their locations in
each iteration of assemblies. My framework [4] takes a partial shape
as input and provides multiple suggestions of complementary parts
(Figure 2). This can be either incorporated in an interactive model-
ing system to assist the users or adapted to a fully automatic system
synthesizing new shapes. In the literature of the assembly-based
shape synthesis, this is the first work that learns the complementary
relationships without manually labeling the parts and thus enables
to utilize a large-scale database of raw CAD models with minimal
preprocessing.
The potential of such part-based shape analysis is in pro-

ducing high-quality 3D models suitable for graphics appli-
cations by reusing local fine geometries in exemplars while
varying global combinatorial structures. The research in this
direction can be further expanded by associating each part in the

Fig. 2. Multiple candidates of complementary parts are suggested in an
iterative process of new shape assembly [4].

structure with deformation operations such as scaling and rotation.
Also, data in various modalities including images, sketches, and
languages can be used to supervise the part assemblies. Ultimately,
I wish to solve a reverse-engineering problem of converting a raw
3D geometry to a CAD form containing both the global structural
information and per-part parameterized shapes.

3 DEEP 3D SHAPE CO-ANALYSIS WITHOUT
RELATIONAL SUPERVISION

One of the main factors in the success of deep learning is the avail-
ability of large data collections. In 3D, there are also many large
repositories of CAD models, indoor/outdoor scenes, human/animal
character shapes, and medical images, decorated with metadata. In
many problems of 3D analysis, however, it is not sufficient to have a
large collection of data but what is needed is to see how the data are
related to each other, particularly in lower levels such as for parts
or points of objects. Such relational information is often annotated
in 3D shapes with labels in the databases, but typically many issues
arise when exploiting them. For example, labels can be inconsis-
tent across models — in terms of both syntax and semantics; e.g.,
in a bike, ‘seat’ or ‘saddle’ label can be interchangeably used for the
same part, and ‘seat’ part may or may not include ‘seat post’. Also,
annotations can be too coarse for some applications; e.g., a
‘rim’ and ‘spokes’ in a ‘wheel’ may need to be distinguished. There
can even be missing annotations. Such difficulties motivate us
to develop neural network frameworks that analyze a set of 3D
shapes without relational supervision.

In the assembly-based shape synthesis introduced in the previous
section, the challenge is in describing which parts can coexist and
contact each other in an object. This part compatibility is deter-
mined by both functionality and style of parts, which are not clearly
classified and thus cannot be adequately expressed with labels. My
neural-network-based framework [4] learning the compatibility
does not rely on any label on parts but leverages geometry and
contact information. It produces latent codes of parts encoding the
compatibility, which also allows comparing their functional and
style-wise roles in the objects and relating them across different
3D models. In my following work [2], the idea of learning the part
relationships is further expanded with a more principled approach.
Here, I introduce a network encoding the sets of compatible parts
with latent codes equipped with algebraic set operations (Figure 3).
Then, when defining interchangeable parts as ones sharing the same
set of compatible parts, they are easily retrieved with the simple set
operations in the latent space.
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Fig. 3. The embedding of parts enables comparing sets of complementary
parts with an algebraic operation and retrieving interchangeable parts based
on the set comparison [2].

These works also led me to consider a more general problem
of relating any type of per-point functions defined on different 3D
shapes. The fundamental difficulty of analyzing the 3D shape
information in a collection is that they are not defined on a
common parameterizing domain like a regular 2D lattice for
images. Building a canonical space mapping to all 3D shapes is
only available with dense correspondences and is also sometimes
infeasible due to heterogeneous groups with only a partial com-
mon structure. In my research [5], I instead leverage canonical-
ization that appears in the training of a neural network learning
shape-dependent basis functions. The output dictionary of atomic
functions for each shape composes the input functions as linear com-
binations of the dictionary elements. What is surprising is that the
network orders the atoms consistently across the different shapes,
thus effectively learning shape correspondences, even though it
was given no supervision towards this end (Figure 4). This frame-
work has been successfully adapted to various applications such
as part/keypoint matching, instance segmentation in 3D scenes,
and functional basis synchronization with arbitrary smooth input
functions.

This line of my work opens up several future research problems.
For example, in a case when each object has a hierarchy of parts
or per-point functions, it becomes a vertical network of parts in
an object while the relationships among parts across objects build
a horizontal network. Then one can ask how to jointly analyze
these two types of networks, which is non-trivial. There can also
be multiple horizontal networks layered for each level of vertical
networks. Moreover, my previous work considers the case when
the relationships are fully unsupervised, but a partially supervised
case can also be considered in future research.

4 SUPERVISED LEARNING FOR MODEL ESTIMATION
In geometry processing, there are many classic problems generally
formulated as optimization problems, such as alignment, deforma-
tion, parameterization, and symmetry detection. The large body of
literature in these problems can make one believe that these are
fully solved. However, many existing algorithms suffer from
the difficulty of fine-tuning algorithm parameters for each
of the input shapes. This is mostly due to the non-convexity of
the problem— even sometimes it needs to findmultiple local minima
corresponding to multiple solutions — and ill-posedness meaning
that the error is sensitive to the change in the model space. This
difficulty prevents processing a large volume of shapes without

Fig. 4. My framework [5] takes a set of unrelated functions on shapes
as input (e.g. subsets of parts and keypoints) and predicts synchronized
dictionaries of atomic functions (e.g. atomic parts).

significant user controls. In practice, such a case of iterating the
same process mostly happens for a specific kind of input data, such
as scans of objects in a particular category and with a known noise
pattern. Thus, in my research, I develop a data-aware framework
leveraging deep learning techniques to learn the hyper-parameters
from supervision.
A problem I have worked on is fitting geometric primitives to

point clouds [1] (Figure 5); primitives include plane, sphere, cylin-
der, and cone. This is an essential process for converting a raw 3D
geometric data to a parametric shape. The problem, however, be-
comes complex in optimization when the number of primitives and
their corresponding areas on the shape are unknown. A threshold of
fitting errors also needs to be very carefully tuned when noises are
present. In my work, a neural network is proposed to understand
the data through supervision. The key in the neural network
design is to find a proper space of outputs. Directly regressing
in primitive parameter spaces is not appropriate since a subtle dif-
ference in this space can lead to a significant fitting error. Instead,
my framework predicts point cloud segments corresponding to each
primitive and their types, which derive the final primitive parame-
ters with a closed-form expression. I believe that such supervised
learning ideas can be further applied to many of the other 3D ge-
ometry processing problems, where a deep network is used to learn
structures and noise characteristics of a particular type of input data
and in turn set parameters and guide a more classical optimization
algorithm to complete the task.

5 FUTURE VISION
The core objective of my research is to facilitate processing and
synthesis of 3D data via discovering the underlying structure from
a data collection. My commitment to this direction has enabled
new capabilities of automating or simplifying various geometry
processing tasks, which were only available with high expertise or a
vast effort of the users. My research is also dedicated to overcoming
the hurdle of big data curation and preparation in the structure
learning procedures and enabling them without direct supervision.
I believe that such efforts can significantly change the landscape of
possibilities in both future research and industrial usages.
In the following, in addition to the future work of each theme

illustrated in the previous sections, I describe more future directions
that I would like to explore:

(1) 3D Scene Understanding with Object Relation Priors
Structures present not only in a single object but also in a
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Fig. 5. A set of geometric primitives predicted to be fitted to the input point
cloud enables downstream applications such as shape editing [1].

scene, including a set of objects. Typical scenes contain re-
peating objects of the same model (e.g., chairs/tables in an of-
fice), and the spatial arrangement of the objects is determined
mainly by their functional interactions. Such relationships
among objects have been extensively utilized in 3D scene
synthesis. However, the other way around, parsing raw 3D
scenes with the object relation priors, remains almost unex-
plored. I plan to extend my works on 3D scene analysis [5, 6]
by learning and leveraging the structural scene priors.

(2) Functionality Learning fromGeometric and Spatial Struc-
tures
In 3D data, the geometry of objects and their spatial arrange-
ment in scenes often reflect their functionalities, as expressed
in a maxim “form follows function”. The functionality of ob-
jects typically refers to the way of interacting with humans
or other objects, which is valuable knowledge in robotics and
graphics applications. Directly acquiring such information,
however, requires to conduct expensive simulations of inter-
actions in real or virtual worlds. I am interested in facilitating
a data-driven analysis of the functionalities by discovering
correlations between them and geometric/spatial structures.

(3) Discovering Intrinsic Structures fromDeformable Shapes
Like human-made objects and scenes, most deformable shapes
such as human and animal bodies also contain structures of
part adjacencies and symmetries, but these structures are
not represented in an extrinsic way in the Euclidean space.
The variation of such shapes are also constrained in multiple
ways: e.g., the skin stretch of human/animal bodies and the
angle of joint movement are limited in specific ranges. I aim
to expand my research scope to the deformable shapes and
discover the intrinsic structures.

(4) Deep Learning 3D Data Variations with Interpretable
Transformations
Unlike other data modalities, 3D data often relate to each
other via explicit and intuitive transformations: e.g., rigid
transformations of parts in articulated objects and pose space
deformations of human/animal shapes. For applications guid-
ing users to explore and manipulate 3D data, it is required
to represent plausible variations with such transformations
understanding shape structures. General generative models,
however, are not capable of specifying the type of transforma-
tions in representing the data distribution. I am interested in

developing deep 3D generative models that enable user con-
trols in 3D data exploration and manipulation with desired
transformations.
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