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Abstract

Various 3D semantic attributes such as segmentation masks, geometric features,
keypoints, and materials can be encoded as per-point probe functions on 3D geome-
tries. Given a collection of related 3D shapes, we consider how to jointly analyze
such probe functions over different shapes, and how to discover common latent
structures using a neural network — even in the absence of any correspondence
information. Our network is trained on point cloud representations of shape geome-
try and associated semantic functions on that point cloud. These functions express
a shared semantic understanding of the shapes but are not coordinated in any way.
For example, in a segmentation task, the functions can be indicator functions of
arbitrary sets of shape parts, with the particular combination involved not known to
the network. Our network is able to produce a small dictionary of basis functions
for each shape, a dictionary whose span includes the semantic functions provided
for that shape. Even though our shapes have independent discretizations and no
functional correspondences are provided, the network is able to generate latent
bases, in a consistent order, that reflect the shared semantic structure among the
shapes. We demonstrate the effectiveness of our technique in various segmentation
and keypoint selection applications.

1 Introduction

Understanding 3D shape semantics from a large collection of 3D geometries has been a popular
research direction over the past few years in both the graphics and vision communities. Many
applications such as autonomous driving, robotics, and bio-structure analysis depend on the ability to
analyze 3D shape collections and the information associated with them.

Background It is common practice to encode 3D shape information such as segmentation masks,
geometric features, keypoints, reflectance, materials, etc. as per-point functions defined on the shape
surface, known as probe functions. We are interested, in a joint analysis setting, in discovering
common latent structures among such probe functions defined on a collection of related 3D shapes.
With the emergence of large 3D shape databases [7], a variety of data-driven approaches, such as
cycle-consistency-based optimization [17] and spectral convolutional neural networks [6], have been
applied to a range of tasks including semi-supervised part co-segmentation [16, 17] and supervised
keypoint/region correspondence estimation [41].

However, one major obstacle in joint analysis is that each 3D shape has its own individual functional
space, and linking related functions across shapes is challenging. To clarify this point, we contrast
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3D shape analysis with 2D image processing. Under the functional point of view, each 2D image is a
function defined on the regular 2D lattice, so all images are functions over a common underlying
parameterizing domain. In contrast, with discretized 3D shapes, the probe functions are generally
defined on heterogeneous shape graphs/meshes, whose nodes are points on each individual shape and
edges link adjacent points. Therefore, the functional spaces on different 3D shapes are independent
and not naturally aligned, making joint analysis over the probe functions non-trivial.

To cope with this problem, in the classical framework, ideas from manifold harmonics and linear
algebra have been introduced. To analyze meaningful functions that are often smooth, a compact
set of basis functions are computed by the eigen-decomposition of the shape graph/mesh Laplacian
matrix. Then, to relate basis functions across shapes, additional tools such as functional maps must
be introduced [29] to handle the conversions among functional bases. This, however, raises further
challenges since functional map estimation can be challenging for non-isometric shapes, and errors
are often introduced in this step. In fact, functional maps are computed from corresponding sets of
probe functions on the two shapes, something which we neither assume nor need.

Approach Instead of a two-stage procedure to first build independent functional spaces and then
relate them through correspondences (functional or traditional), we propose a novel correspondence-
free framework that directly learns consistent bases across a shape collection that reflect the shared
structure of the set of probe functions. We produce a compact encoding for meaningful functions
over a collection of related 3D shapes by learning a small functional basis for each shape using neural
networks. The set of functional bases of each shape, a.k.a a shape-dependent dictionary, is computed
as a set of functions on a point cloud representing the underlying geometry — a functional set whose
span will include probe functions on that shape. The training is accomplished in a very simple manner
by giving the network sequences of pairs consisting of a shape geometry (as point clouds) and a
semantic probe function on that geometry (that should be in the associated basis span). Our shapes are
correlated, and thus the semantic functions we train on reflect the consistent structure of the shapes.
The neural network will maximize its representational capacity by learning consistent bases that
reflect this shared functional structure, leading in turn to consistent sparse function encodings. Thus,
in our setting, consistent functional bases emerge from the network without explicit supervision.

We also demonstrate how to impose different constraints to the network optimization problem so that
atoms in the dictionary exhibit desired properties adaptive to application scenarios. For instance, we
can encourage the atoms to indicate smallest parts in the segmentation, or single points in keypoint
detection. This implies that our model can serve as a collaborative filter that takes any mixture of
semantic functions as inputs, and find the finest granularity that is the shared latent structure. Such a
possibility can particularly be useful when the annotations in the training data are incomplete and
corrupted. For examples, users may desire to decompose shapes into specific parts, but all shapes
in the training data have only partial decomposition data without labels on parts. Our model can
aggregate the partial information across the shapes and learn the full decomposition.

We remark that our network can be viewed as a function autoencoder, where the decoding is required
to be in a particular format (a basis selection in which our function is compactly expressible). The
resulting canonicalization of the basis (the consistency we have described above) is something also
recently seen in other autoencoders, for example in the quotient-space autoencoder of [10] that
generates shape geometry into a canonical pose.

In experiments, we test our model with existing neural network architectures, and demonstrate the
performance on labeled/unlabeled segmentation and keypoint correspondence problem in various
datasets. In addition, we show how our framework can be utilized in learning synchronized basis
functions with random continuous functions.

Contribution Though simple, our model has advantages over the previous bases synchronization
works [37, 36, 41] in several aspects. First, our model does not require precomputed basis functions.
Typical bases such as Laplacian (on graphs) or Laplace-Beltrami (on mesh surfaces) eigenfunctions
need extra preprocessing time for computation. Also, small perturbation or corruption in the shapes
can lead to big differences. We can avoid the overhead of such preprocesssing by predicting
dictionaries while also synchronizing them simultaneously. Second, our dictionaries are application-
driven, so each atom of the dictionary itself can attain a semantic meaning associated with small-
scale geometry, such as a small part or a keypoint, while LB eigenfunctions are only suitable for
approximating continuous and smooth functions (due to basis truncation). Third, the previous works
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(a) Co-segmentation (b) Keypoint correspondence (c) Smooth function approximation

Figure 1: Inputs and outputs of various applications introduced in Section 3: (a) co-segmentation,
(b) keypoint correspondence, and (c) smooth function approximation problems. The inputs of (a)
and (b) are a random set of segments/keypoints (without any labels), and the outputs are single
segment/keypoint per atom in the dictionaries consistent across the shapes. The input of (c) is a
random linear combination of LB bases, and the outputs are synchronized atomic functions.

define canonical bases, and the synchronization is achieved from the mapping between each individual
set of bases and the canonical bases. In our model, the neural network becomes the synchronizer,
without any explicit canonical bases. Lastly, compared with classical dictionary learning works that
assume a universal dictionary for all data instances, we obtain a data-dependent dictionary that allows
non-linear distortion of atoms but still preserves consistency. This endows us additional modeling
power without sacrificing model interpretability.

1.1 Related Work

Since much has already been discussed above, we only cover important missing ones here.

Learning compact representations of signals has been widely studied in many forms such as factor
analysis and sparse dictionaries. Sparse dictionary methods learn an overcomplete basis of a collection
of data that is as succinct as possible and have been studied in natural language processing [9, 12],
time-frequency analysis [8, 22], video [25, 1], and images [21, 42, 5]. Encoding sparse and succinct
representations of signals has also been observed in biological neurons [27, 26, 28].

Since the introduction of functional maps [29], shape analysis on functional spaces has also been
further developed in a variety of settings [30, 20, 17, 11, 34, 24], and mappings between pre-computed
functional spaces have been studied in a deep learning context as well [23]. In addition to our work,
deep learning on point clouds has also been done on shape classification [32, 33, 19, 39], semantic
scene segmentation [15], instance segmentation [38], and 3D amodal object detection [31]. We
bridge these areas of research in a novel framework that learns, in a data-driven end-to-end manner,
data-adaptive dictionaries on the functional space of 3D shapes.

2 Problem Statement

Given a collection of shapes {Xi}, each of which has a sample function of specific semantic meaning
{fi} (e.g. indicator of a subset of semantic parts or keypoints), we consider the problem of sharing
the semantic information across the shapes, and predicting a functional dictionary A(X ; Θ) for
each shape that linearly spans all plausible semantic functions on the shape (Θ denotes the neural
network weights). We assume that a shape is given as n points sampled on its surface, a function f is
represented with a vector in Rn (a scalar per point), and the atoms of the dictionary are represented
as columns of a matrix A(X ; Θ) ∈ Rn×k, where k is a sufficiently large number for the size of the
dictionary. Note that the column space of A(X ; Θ) can include any function f if it has all Dirac
delta functions of all points as columns. We aim at finding a much lower-dimensional vector space
that also contains all plausible semantic functions. We also force the columns of A(X ; Θ) to encode
atomic semantics in applications, such as atomic instances in segmentation, by adding appropriate
constraints.

3 Deep Functional Dictionary Learning Framework

General Framework We propose a simple yet effective loss function, which can be applied to any
neural network architecture processing a 3D geometry as inputs. The neural network takes pairs
of a shape X including n points and a function f ∈ Rn as inputs in training, and outputs a matrix
A(X ; Θ) ∈ Rn×k as a dictionary of functions on the shape. The loss function needs to be designed
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1: function SINGLE STEP GRADIENT ITERATION(X , f , Θt, η)
2: Compute: At = A(X ; Θt).
3: Solve: xt = arg minx ‖Atx− f‖22 s.t. C(x).
4: Update: Θt+1 = Θt − η∇L(A(X ; Θt); f,xt).
5: end function

Algorithm 1: Single-Step Gradient Iteration. X is an input shape (n points), f is an input function
defined on X , Θt is neural network weights at time t, A(X ; Θt) is an output dictionary of functions
on X , C(x) is the constraints on x, and η is learning rate. See Section 2 and 3 for details.

for minimizing both 1) the projection error from the input function f to the vector space A(X ; Θ),
and 2) the number of atoms in the dictionary matrix. This gives us the following loss function:

L(A(X ; Θ); f) = min
x
F (A(X ; Θ),x; f) + γ‖A(X ; Θ)‖2,1

s.t. F (A(X ; Θ),x; f) = ‖A(X ; Θ)x− f‖22
C(A(X ; Θ),x),

(1)

where x ∈ Rk is a linear combination weight vector, γ is a weight for regularization. F (A(X ; Θ))
is a function that measures the projection error, and the l2,1-norm is a regularizer inducing struc-
tured sparsity, encouraging more columns to be zero vectors. We may have a set of constraints
C(A(X ; Θ),x) on both A(X ; Θ) and x depending on the applications. For example, when the input
function is an indicator (binary) function, we constrain all elements in both A(X ; Θ) and x to be in
[0, 1] range. Other constraints for specific applications are also introduced at the end of this section.

Note that our loss minimization is a min-min optimization problem; the inner minimization, which is
embedded in our loss function in Equation 1, optimizes the reconstruction coefficients based on the
shape dependent dictionary predicted by the network, and the outer minimization, which minimizes
our loss function, updates the neural network weights to predict a best shape dependent dictionary.
The nested minimization generally does not have an analytic solution due to the constraint on x.
Thus, it is not possible to directly compute the gradient of L(A(X ; Θ); f) without x. We solve this
by an alternating minimization scheme as described in Algorithm 1. In a single gradient descent step,
we first minimize F (A(X ; Θ); f) over x with the current A(X ; Θ), and then compute the gradient
of L(A(X ; Θ); f) while fixing x. The minimization F (A(X ; Θ); f) over x is a convex quadratic
programming, and the scale is very small since A(X ; Θ) is a very thin matrix (n � k). Hence, a
simplex method can very quickly solve the problem in every gradient iteration.

Adaptation in Weakly-supervised Co-segmentation Some constraints for both A(X ; Θ) and x
can be induced from the assumptions of the input function f and the properties of the dictionary
atoms. In the segmentation problem, we take an indicator function of a set of segments as an input,
and we desire that each atom in the output dictionary indicates an atomic part (Figure 1 (a)). Thus, we
restrict both A(X ; Θ) and x to have values in the [0, 1] range. Also, the atomic parts in the dictionary
must partition the shape, meaning that each point must be assigned to one and only one atom. Thus,
we add sum-to-one constraint for every row of A(X ; Θ). The set of constraints for the segmentation
problem is defined as follows:

Cseg(A(X ; Θ),x) =


0 ≤ x ≤ 1
0 ≤ A(X ; Θ) ≤ 1∑
j A(X ; Θ)i,j = 1 for all i

 , (2)

where A(X ; Θ)i,j is the (i, j)-th element of matrix A(X ; Θ), and 0 and 1 are vectors/matrices with
an appropriate size. The first constraint on x is incorporated in solving the inner minimization
problem, and the second and third constraints on A(X ; Θ) can simply be implemented by using
softmax activation at the last layer of the network.

Adaptation in Weakly-supervised Keypoint Correspondence Estimation Similarly with the
segmentation problem, the input function in the keypoint correspondence problem is also an indicator
function of a set of points (Figure 1 (b)). Thus, we use the same [0, 1] range constraint for both
A(X ; Θ) and x. Also, each atom needs to represent a single point, and thus we add sum-to-one
constraint for every column of A(X ; Θ):
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Ckey(A(X ; Θ),x) =


0 ≤ x ≤ 1
0 ≤ A(X ; Θ) ≤ 1∑
iA(X ; Θ)i,j = 1 for all j

 (3)

For robustness, a distance function from the keypoints can be used as input instead of the binary
indicator function. Particularly some neural network architectures such as PointNet [32] do not exploit
local geometry context. Hence, a spatially localized distance function can avoid overfitting to the
Dirac delta function. We use a normalized Gaussian-weighed distance function g in our experiment:
gi(s) = exp(d(pi,s)

2/σ)∑
i gi(s)

, where gi(s) is i-th element of the distance function from the keypoint s, pi
is i-th point coordinates, d(·, ·) is Euclidean distance, and σ is Gaussian-weighting parameter (0.001
in our experiment). The distance function is normalized to sum to one, which is consistent with our
constraints in Equation 3. The sum of any subset of the keypoint distance functions becomes an input
function in our training.

Adaptation in Smooth Function Approximation and Mapping For predicting atomic functions
whose linear combination can approximate any smooth function, we generate the input function by
taking a random linear combination of LB bases functions (Figure 1 (c)). We also use a unit vector
constraint for each atom of the dictionary:

Cmap(A(X ; Θ),x) =

{∑
i

A(X ; Θ)2i,j = 1 for all j

}
(4)

4 Experiments

We demonstrate the performance of our model in keypoint correspondence and segmentation problems
with different datasets. We also provide qualitative results of synchronizing atomic functions on
non-rigid shapes. While any neural network architecture processing 3D geometry can be employed
in our model (e.g. PointNet [32], PointNet++ [33], KD-NET [19], DGCNN [39], ShapePFCN [18]),
we use PointNet [32] architecture in the experiments due to its simplicity. Note that our output
A(X ; Θ) is a set of k-dimensional row vectors for all points. Thus, we can use the PointNet
segmentation architecture without any modification. Code for all experiments below is available in
https://github.com/mhsung/deep-functional-dictionaries.

4.1 ShapeNet Keypoint Correspondence
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Figure 2: ShapeNet keypoint cor-
respondence result visualizations
and PCK curves.

Yi et al. [41] provide keypoint annotations on 6,243 chair models
in ShapeNet [7]. The keypoints are manually annotated by ex-
perts, and all of them are matched and aligned across the shapes.
Each shape has up to 10 keypoints, while most of the shapes have
missing keypoints. In the training, we take a random subset of
keypoints of each shape to feed an input function, and predict a
function dictionary in which atoms indicate every single keypoint.
In the experiment, we use a 80-20 random split for training/test
sets 1, train the network with 2k point clouds as provided by [41],
and set k = 10 and γ = 0.0.

Figure 2 (at the top) illustrates examples of predicted keypoints
when picking the points having the maximum value in each atom.
The colors denote the order of atoms in dictionaries, which is
consistent across all shapes despite their different geometries. The
outputs are also evaluated by the percentage of correct keypoints
(PCK) metric as done in [41] while varying the Euclidean distance
threshold (Figure 2 at the bottom). We report the results for both
when finding the best one-to-one correspondences between the

1Yi et al. [41] use a select subset of models in their experiment, but this subset is not provided by the authors.
Thus, we use the entire dataset and make our own train/test split.
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Table 1: ShapeNet part segmentation comparison with PointNet segmentation (same backbone
network architecture as ours). Note that PointNet has additional supervision (class labels) compared
with ours (Sec 4.2). The average mean IoU of our method is measured by finding the correspondences
between ground truth and predicted segments for each shape. k = 10 and γ = 1.0.

mean air-
plane

bag cap car chair ear-
phone

guitar knife lamp laptop motor-
bike

mug pistol rocket skate-
board

table

PointNet [32] 82.4 81.4 81.1 59.0 75.6 87.6 69.7 90.3 83.9 74.6 94.2 65.5 93.2 79.3 53.2 74.5 81.3
Ours 84.6 81.2 72.7 79.9 76.5 88.3 70.4 90.0 80.5 76.1 95.1 60.5 89.8 80.8 57.1 78.3 88.1

Table 2: ShapeNet part segmentation results. The first row is when finding the correspondences
between ground truth and predicted segments per shape. The second row is when finding the
correspondences between part labels and indices of atoms per category. k = 10 and γ = 1.0.

mean air-
plane

bag cap car chair ear-
phone

guitar knife lamp laptop motor-
bike

mug pistol rocket skate-
board

table

Ours (per shape) 84.6 81.2 72.7 79.9 76.5 88.3 70.4 90.0 80.5 76.1 95.1 60.5 89.8 80.8 57.1 78.3 88.1
Ours (per cat.) 77.3 79.0 67.5 66.9 75.4 87.8 58.7 90.0 79.7 37.1 95.0 57.1 88.8 78.4 46.0 75.8 78.4

ground truth and predicted keypoints for each shape (red line)
and when finding the correspondences between ground truth labels and atom indices for all shapes
(green line). These two plots are identical, meaning that the order of predicted keypoints is rarely
changed in different shapes. Our results also outperform the previous works [14, 41] by a big margin.

4.2 ShapeNet Semantic Part Segmentation

ShapeNet [7] contains 16,881 shapes in 16 categories, and each shape has semantic part annota-
tions [40] for up to six segments. Qi et al. [32] train PointNet segmentation using shapes in all
categories, and the loss function is defined as the cross entropy per point with all labels. We follow
their experiment setup by using the same split of training/validation/test sets and the same 2k sampled
point cloud as inputs. The difference is that we do not leverage the labels of segments in training,
and consider the parts as unlabeled segments. We also deal with the more general situation that
each shape may have incomplete segmentation by taking an indicator function of a random subset of
segments as an input.

Evaluation For evaluation, we binarize A(X ; Θ) by finding the maximum value in each row, and
consider each column as an indicator of a segment. The accuracy is measured based on the average of
each shape mean IoU similarly with Qi et al. [32], but we make a difference since our method does
not exploit labels. In ShapeNet, some categories have optional labels, and shapes may or may not
have a part with these optional labels (e.g. armrests of chairs). Qi et al. [32] take into account the
optional labels even when the segment does not exist in a shape 2. But we do not predict labels of
points, and thus such cases are ignored in our evaluation.

We first measure the performance of segmentation by finding the correspondences between ground
truth and predicted segments for each shape. The best one-to-one correspondences are found by
running the Hungarian algorithm on mean IoU values. Table 1 shows the results of our method when
using k = 10 and γ = 1.0, and the results of the label-based PointNet segmentation [32]. When only
considering the segmentation accuracy, our approach outperforms the original PointNet segmentation
trained with labels.

We also report the average mean IoUs when finding the best correspondences between part labels and
the indices of dictionary atoms per category. As shown in Table 2, the accuracy is still comparable in
most categories, indicating that the order of column vectors inA(X ; Θ) are mostly consistent with the
semantic labels. There are a few exceptions; for example, lamps are composed of shades, base, and
tube, and half of lamps are ceiling lamps while the others are standing lamps. Since PointNet learns
per-point features from the global coordinates of the points, shades and bases are easily confused
when their locations are switched (Figure 3). Such problem can be resolved when using a different

2IoU becomes zero if the label is assigned to any point in prediction, and one otherwise.
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Figure 3: Examples of ShapeNet part segmentation results. The colors indicate the indices of atoms
in the dictionaries. The order of atoms are consistent in most shapes except when the part geometries
are not distinguishable. See the confusion of a ceiling lamp shade (at first row) and a standing lamp
base (at second row) highlighted with red circles.
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Figure 6: Comparison of
S3DIS instance segmentation
results. Left is SGPN [38],
and right is ours.

Table 3: S3DIS instance segmentation proposal recall comparison per class. IoU threshold is 0.5.

mean ceiling floor wall beam column window door table chair sofa bookcase board

SGPN [38] 64.7 67.0 71.4 66.8 54.5 45.4 51.2 69.9 63.1 67.6 64.0 54.4 60.5
Ours 69.1 95.4 99.2 77.3 48.0 39.2 68.2 49.2 56.0 53.2 35.3 31.6 42.2

neural network architecture learning more from the local geometric contexts. For more analytic
experiments, refer to the supplementary material.

4.3 S3DIS Instance Segmentation

Stanford 3D Indoor Semantic Dataset (S3DIS) [2] is a collection of real scan data of indoor scenes
with annotations of instance segments and their semantic labels. When segmenting instances in
such data, the main difference with the semantic segmentation of ShapeNet is that there can exist
multiple instances of the same semantic label. Thus, the approach of classifying points with labels
is not applicable. Recently, Wang et al. [38] tried to solve this problem by leveraging the PointNet
architecture. Their framework named SGPN learns a similarity metric among points, enabling every
point to generate a instance proposal based on proximity in the learned feature space. The per-point
proposals are further merged in a heuristic post processing step. We compare the performance of our
method with the same experiment setup with SGPN. The input is a 4k point cloud of a 1m × 1m
floor block in the scenes, and each block contains up to 150 instances. Thus, we use k = 150 and
γ = 1.0. Refer to [38] for the details of the data preparation. In the experiments of both methods, all
6 areas of scenes except area 5 are used as a training set, and the area 5 is used as a test set.

Evaluation We evaluate the performance of instance proposal prediction in each block of the
scenes. 3 As an evaluation metric, we use proposal recall [13], which measures the percentage

3Wang et al. [38] propose a heuristic process of merging prediction results of each block and generating
instance proposals in a scene, but we measure the performance for each block in order to factor out the effect of
this post-processing step.
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Figure 7: Output atomic functions with random continuous
functions on MPI-FAUST human shapes [4]. K = 10 and
γ = 0.0. The order of atoms are consistent.

Figure 8: Five parts transfer from
the base shape (left) to other shapes
(each row).

of ground truth instances covered by any prediction within a given IoU threshold. In both SGPN
and our model, the outputs are non-overlapped segments, thus we do not consider the number of
proposals in the evaluation. Figure 4 depicts the proposal recall of both methods when varying the
IoU threshold from 0.5 to 1.0. The recall of our method is greater than the baseline throughout all
threshold levels. The recalls for each semantic part label with IoU threshold 0.5 are reported in
Table 3. Our method performs well specifically for large objects such as ceilings, floors, walls, and
windows. Note that Wang et al. [38] start their training from a pretrained model for semantic label
prediction, and also their framework consumes point labels as supervision in the training to jointly
predict labels and segments. Our model is trained from scratch and label-free.

Consistency with semantic labels Although it is hard to expect strong correlations among semantic
part labels and the indices of dictionary atoms in this experiment due to the large variation of scene
data, we still observe weak consistency between them. Figure 5 illustrates confusion among semantic
part labels. This confusion is calculated by first creating a vector for each label in which the i-th
element indicates the count of the label in the i-th atom, normalizing this vector, and taking a dot
product for every pair of labels. Ceilings and floors are clearly distinguished from the others due
to their unique positions and scales. Some groups of objects having similar heights (e.g. doors,
bookcases, and boards; chairs and sofas) are confused with each other frequently, but objects in
different groups are discriminated well.

4.4 MPI-FAUST Human Shape Bases Synchronization

In this experiment, we aim at finding synchronized atomic functions in a collection of shapes for
which linear combination can approximate any continuous function. Such synchronized atomic
functions can be utilized in transferring any information on one shape to the other without having
point-wise correspondences. Here, we test with 100 non-rigid human body shapes in MPI-FAUST
dataset [4]. Since the shapes are deformable, it is not appropriate to process Euclidean coordinates
of a point cloud as inputs. Hence, instead of a point cloud and the PointNet, we use HKS [35] and
WKS [3] point descriptors for every vertex, and process them using 7 residual layers shared for all
points as proposed in [23]. The point descriptors cannot clearly distinguish symmetric parts in a
shape, so the output atomic functions also become symmetric. To break the ambiguity, we sample
four points using farthest point sampling in each shape, find their one-to-one correspondences in
other shapes using the same point descriptor, and use the geodesic distances from these points as
additional point features. As input functions, we compute Laplace-Beltrami operators on shapes, and
take a random linear combination of the first ten bases.

Figure 7 visualizes the output atomic function when we train the network with k = 10 and γ = 0.0.
The order of atomic functions are consistent in all shapes. In Figure 8, we show how the information
in one shape is transferred to the other shapes using our atomic functions. We project the indicator
function of each segment (at left in figure) to the function dictionary space of the base shape, and
unproject them in the function dictionary space of the other shapes. The transferred segment functions
are blurry since the network is trained with only continuous functions, but still indicate proper areas
of the segments.
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5 Conclusion

We have investigated a problem of jointly analyzing probe functions defined on different shapes,
and finding a common latent space through a neural network. The learning framework we proposed
predicts a function dictionary of each shape that spans input semantic functions, and finds the atomic
functions in a consistent order without any correspondence information. Our framework is very
general, enabling easy adaption to any neural network architecture and any application scenario. We
have shown some examples of constraints in the loss function that can allow the atomic functions to
have desired properties in specific applications: the smallest parts in segmentation, and single points
in keypoint correspondence.

In the future, we will further explore the potential of our framework to be applied to various
applications and even in different data domains. Also, we will investigate how the power of neural
network decomposing a function space to atoms can be enhanced through different architectures and
a hierarchical basis structure.
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Supplementary Material

S.1 ShapeNet Semantic Part Segmentation – Analytic Experiments

Effect of k and γ In Table S1, we demonstrate the effect of changing parameter k and γ. When the
l2,1-norm regularizer is not used (γ = 0), the accuracy decreases as k increases since parts can map
to a number of smaller segments. After adding the regularizer with a weight γ, the accuracy becomes
similar however we choose the number of columns k. We found that the l2,1-norm regularizer
effectively forces the unnecessary columns to be close to a zero vector.

Training with partial segmentation In the segmentation problem using unlabeled segments, learn-
ing from partial segmentation is a non-trivial task, while our method can easily learn segmentation
from the partial information. To demonstrate this, we randomly select a set of parts in the entire
training set with a fixed fraction, and ignore them when choosing a random subset of segments for
input functions. The accuracy according to the fraction is shown in Table S2. Note that performance
remains roughly the same even when we do not use 75% of segments in the training.

Training with noise We test the robustness of our training system against noise in the input function
b. Table S3 describes the performance when switching each bit of the binary indicator function with
a specific probability. The results show that our system is not affected by the small noise in the input
functions.

Table S1: Average mIoU on
ShapeNet parts with different k
and γ

k
γ 0.0 0.5 1.0

10 75.0 82.7 84.6
25 71.2 83.8 85.2
50 65.3 82.9 82.9

Table S2: Average mIoU on
ShapeNet parts with partial seg-
mentations (k = 10, γ = 1.0).

Fraction mIoU

0.00 84.6
0.25 86.1
0.50 86.0
0.75 84.5

Table S3: Average mIoU on
ShapeNet parts with noise in in-
puts (k = 10, γ = 1.0).

Probability mIoU

0.00 84.6
0.05 85.8
0.10 85.9
0.20 85.1

S.2 Siamese Structure for Correspondence Supervision

While our framework empirically performs well on generating consistent function dictionaries even
without correspondences, we further investigate about how the correspondence supervision can be
incorporated in our framework when it is provided. We consider the case when the correspondence
information is given as a pair or functions in different shapes. Note that this setup does not require
to have full correspondence information for all pairs. The correspondence of functions means
that two functions are represented with the same linear combination weight x when the order of
dictionary atoms are consistent. Thus, we build a Siamese neural network structure processing two
corresponding functions, and minimize the inner problem F (A(X ; Θ),x; f) in the loss function
Equation 1 jointly with the shared variable x.

We test this approach with the ShapeNet part segmentation problem. Every time when feeding
the input function in the training, we find the other shape that have a corresponding function, and
randomly choose one of them. The comparison with the vanilla framework is shown in Table S4
and S5. k = 10 and γ = 1.0 are used in both experiments. When finding the best one-to-one
correspondences between ground truth part labels and atom indices in each category, the Siamese
structure shows 3.0% improvement in average mean IoU, meaning that the output dictionaries make
less confusion when distinguishing semantic parts with the indices of atoms. It also gives better
accuracy when finding the correspondences in each shape.
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Table S4: Performance comparison of vanilla and Siamese structures when finding the correspon-
dences between part labels and atom indices per category. k = 10 and γ = 1.0.

mean air-
plane

bag cap car chair ear-
phone

guitar knife lamp laptop motor-
bike

mug pistol rocket skate-
board

table

Vanilla 77.3 79.0 67.5 66.9 75.4 87.8 58.7 90.0 79.7 37.1 95.0 57.1 88.8 78.4 46.0 75.8 78.4
Siamese 80.3 78.6 73.7 44.8 76.9 87.7 65.0 90.6 85.2 60.4 94.7 60.5 93.6 78.5 55.8 76.1 80.1

Table S5: Performance comparison of vanilla and Siamese structures when finding the correspon-
dences between part labels and atom indices per object. k = 10 and γ = 1.0.

mean air-
plane

bag cap car chair ear-
phone

guitar knife lamp laptop motor-
bike

mug pistol rocket skate-
board

table

Vanilla 84.6 81.2 72.7 79.9 76.5 88.3 70.4 90.0 80.5 76.1 95.1 60.5 89.8 80.8 57.1 78.3 88.1
Siamese 85.6 82.2 75.7 74.5 77.5 88.4 73.5 91.0 85.2 77.9 95.9 63.4 93.6 80.7 62.4 80.7 88.9
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