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Introduction

Various 3D semantic attributes can be encoded as per-point probe functions on 3D geometries.

Clinical annotations Parts Instances Keypoints Reflectance

Given a collection of related 3D shapes {Xi}, we consider how to jointly analyze such probe func-

tions over different shapes {fi}, and how to discover common latent structures using a neural net-

work — even in the absence of any correspondence information. Our network produces a small

dictionary of basis functions for each shapeA(Xi; Θ), a dictionarywhose linear span includes the se-
mantic functions provided for that shape. Even though our shapes have independent discretizations

and no functional correspondences are provided, the network is able to generate latent bases, in a

consistent order, that reflect the shared semantic structure among the shapes.

=
"($;&) ($(shape)

)
(function)

EachshapeX is givenasnpoints sampledon its surface.

A function f is representedwith a vector inRn (a scalar

per point).

The atoms of the dictionaryA(X ; Θ) ∈ Rn×k are repre-

sented as columns of a matrix. k is a large number for

the maximum size of the dictionary.

The columns of A(X ; Θ) are enforced to encode atomic semantics in applications (e.g. atomic in-

stances in segmentation) by adding appropriate constraints.

Deep Functional Dictionary Learning Framework

Our neural network takes shape-function pairs (X , f ) as inputs in training, and outputs a functional
dictionaryA(X ; Θ) foreachshape. Loss functionL(A(X ; Θ); f ) is designed tominimize1) theprojec-
tion error from f to the vector spaceA(X ; Θ), and 2) the number of atoms in the dictionary matrix:

L(A(X ; Θ); f ) = min
x

F (A(X ; Θ), x; f ) + γ‖A(X ; Θ)‖2,1

s.t. F (A(X ; Θ), x; f ) = ‖A(X ; Θ)x − f‖2
2

C(A(X ; Θ), x)

x ∈ Rk is a linear combination weights, and C(A(X ; Θ), x) is a set of constraints on both A(X ; Θ)
andx determined in each application.

Since the nested minimization F (A(X ; Θ), x; f ) is generally not solved analytically due to

C(A(X ; Θ), x), we use an alternatingminimization scheme:

function Single Step Gradient Iteration(X , f ,Θt, η)
Compute: At = A(X ; Θt).
Solve: xt = arg minx ‖Atx − f‖2

2 s.t. C(x).
Update: Θt+1 = Θt − η∇L(A(X ; Θt); f, xt).

end function

ShapeNet Semantic Part Segmentation

Ours outperforms vanilla PointNet [1] on average mean IoU metric when finding correspondences

between ground truth and predicted part segments in each shape. Note that PointNet uses addi-

tional part label supervision.
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PointNet [1] 82.4 81.4 81.1 59.0 75.6 87.6 69.7 90.3 83.9 74.6 94.2 65.5 93.2 79.3 53.2 74.5 81.3

Ours 84.6 81.2 72.7 79.9 76.5 88.3 70.4 90.0 80.5 76.1 95.1 60.5 89.8 80.8 57.1 78.3 88.1

The average Mean IoU is still comparable when finding correspondences between part labels and

atom indices in each category, meaning that the order of atoms is consistent.
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Ours (per shape) 84.6 81.2 72.7 79.9 76.5 88.3 70.4 90.0 80.5 76.1 95.1 60.5 89.8 80.8 57.1 78.3 88.1

Ours (per cat.) 77.3 79.0 67.5 66.9 75.4 87.8 58.7 90.0 79.7 37.1 95.0 57.1 88.8 78.4 46.0 75.8 78.4

Colors of part segments below indicate indices of atoms, which are consistent except when part ge-

ometries are not distinguishable: e.g. shade of ceiling lamps and base of standing lamps (in circles).

Adaptation in Applications

Weakly-supervised Co-segmentation

[0, 1] range and partitioning constraints:

Cseg(A(X ; Θ), x) =



0 ≤ x ≤ 1

0 ≤ A(X ; Θ) ≤ 1
∑

j A(X ; Θ)i,j = 1 for all i


Weakly-supervised Keypoint Correspondence Estimation

[0, 1] range and single point constraints:

Ckey(A(X ; Θ), x) =



0 ≤ x ≤ 1

0 ≤ A(X ; Θ) ≤ 1
∑

i A(X ; Θ)i,j = 1 for all j


Smooth Function Apprixmation andMapping

Unit vector constraint:

Cmap(A(X ; Θ), x) =

∑
i

A(X ; Θ)2
i,j = 1 for all j



Neural Network Architecture

In all experiments, we used PointNet [1] segmentation architecture without any modification, but

any other architecture processing 3D geometry can be employed.

ShapeNet Semantic Part Segmentation

Ours outperforms vanilla PointNet [1] on average mean IoU metric when finding correspondences

between ground truth and predicted part segments in each shape (left). Note that PointNet uses

additional part label supervision. The averageMean IoU is still comparablewhen finding correspon-

dences between part labels and atom indices in each category (right).

PointNet [1] Ours

avg. mIoU 82.4 84.6

Ours (per shape) Ours (per cat.)

avg. mIoU 84.6 77.3

Figure 1: Colors of part segments indicate indices of atoms, which are consistent unless part geometries are not distin-

guishable: e.g. shade of ceiling lamp and base of standing lamp (in circles).

ShapeNet Keypoint Correspondences
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The percentage of correct keypoints (PCK) is mea-

suredbothwhenfinding correspondencesbetween

ground truthandpredictedkeypoints ineachshape

(red line) and finding between ground truth labels

and atom indices for all shapes (green line).

The PCK curves are identical, meaning that the

order of predicted keypoints is consistent across

shapes.

S3DIS Instance Segmentation

Theperformanceof instance proposal prediction in 3Dscenes is evaluatedwith proposal recallmet-

ric. The class confusion (middle) is calculated as frequencies being included in the same atoms.
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Figure 2: Proposal recall.
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Figure 3: Class confusionmatrix. Figure 4: Wang et al. [2] (L) / Ours (R).

MPI-FAUST Human Shape Bases Synchronization

Our framework can find synchronized atomic functions for which linear combination can approxi-

mate any random continuous function (left). Any information in one shape can be transferred to the

other shapes through the synchronized bases: e.g. parts (right).

[Code] https://github.com/mhsung/deep-functional-dictionaries
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