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Introduction

Various 3D semantic attributes can be encoded as per-point probe functions on 3D geometries.
- .u A
Thickness i r’ L

P
I|
. head f‘ .. |
f /
tOI 50 -' T -":,- R SRy AR T 8 o7 e R 1L Y e o i/ L Y f
» s e F
e 5 | ; 1
B uppe 4 ; , o u/ .,
Y. ) A e S {
: : A w )
5 & Bg o |
% T i
‘ (3 ':"". A }t{\'& -,-!nﬁ:}'
W Ll X AR
iy Ty B B ."“
’ " B .rr ,J'.‘,ttj{ - "‘L,:

lower
M hand

Bl upper
B lower

B foot

25mm 4mm

| o~ o’ Nl

Clinical annotations Parts Instances Keypoints Reflectance

Given a collection of related 3D shapes {&;}, we consider how to jointly analyze such probe func-
tions over different shapes { f;}, and how to discover common latent structures using a neural net-
work — even In the absence of any correspondence information. Our network produces a small
dictionary of basis functions for each shape A(X;; ©), adictionary whose linear span includes the se-
mantic functions provided for that shape. Even though our shapes have independent discretizations
and no functional correspondences are provided, the network i1s able to generate latent bases, in a
consistent order, that reflect the shared semantic structure among the shapes.

sented as columns of a matrix. k Is a large number for l [ l
the maximum size of the dictionary.

= The columns of A(X; ©) are enforced to encode atomic semantics in app\ications (e.g. atomic in-
stances in segmentation) by adding appropriate constraints.

= Fachshape X Isgiven asn points sampled onits surface.

= Afunction f isrepresented with a vector in R" (a scalar
per point).

= The atoms of the dictionary A(X;©) € R™ ¥ are repre-
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Deep Functional Dictionary Learning Framework

Our neural network takes shape-function pairs (X, f) as inputs in training, and outputs a functional
dictionary A(X’; ©) for each shape. Loss function L(A(X; ©); f)isdesigned tominimize 1) the projec-
tion error from f to the vector space A(X; ©), and 2) the number of atoms in the dictionary matrix:

L(A(X;0); f) = min F(A(X;0),z; f) + 7||A(X; O)][2.
st. F(AX;0),z; f) = |AX;0)x — f];
C(A(X;0), )

x € R”is alinear combination weights, and C(A(X; ©), x) is a set of constraints on both A(X; ©)
and & determined in each application.

Since the nested minimization F(A(X;0O),x; f) is generally not solved analytically due to
C(A(X;0),x), we use an alternating minimization scheme:

function Single Step Gradient Iteration(X’, f, ©f, n)
Compute: A" = A(X: 0.
Solve: &' = arg ming ||A'x — f||5 st. C(x).
Update: 0! = @' — nVL(A(X;0): f, x").
end function
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Adaptation in Applications

Weakly-supervised Co-segmentation

0, 1] range and partitioning constraints:

0<z<I1
Cseg(A(X;0),2) = {0 < A(X;0) <1 >
»; A(X;0);;, =1 forall 4

Weakly-supervised Keypoint Correspondence Estimation

Yomm _ | 0, 1] range and single point constraints:

0<a<T
Cley(A(X;0),2) =0 < A(X;0) < 1 >

v A(X;0);;, =1 forall j
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Smooth Function Apprixmation and Mapping
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Neural Network Architecture

Unit vector constraint:

/

AKX @)f?’j = 1 for all j}
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Crhap(A(X;0), @) =

In all experiments, we used PointNet | 1] seementation architecture without any modification, but
any other architecture processing 3D geometry can be employed.

ShapeNet Semantic Part Segmentation

ShapeNet Keypoint Correspondences

o .0 . 1.0 The percentage of correct keypoints (PCK) is mea-

1 . mg: sured both when finding correspondences between

¢« o1 95 %O'7 oround truth and predicted keypoints in each shape

[P I o _Eos (red line) and finding between ground truth labels
v o afgj e 2013 and atom indices for all shapes (green line).

Wit o ¢ G 0.3 X The PCK curves are identical, meaning that the
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order of predicted keypoints Is consistent across
shapes.
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S3DIS Instance Segmentation

The performance of instance proposal prediction in 3D scenes is evaluated with proposal recall met-
ric. The class confusion (middle) is calculated as frequencies being included in the same atoms.
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Figure 2: Proposal recall. Figure 3: Class confusion matrix.

MPI-FAUST Human Shape Bases Synchronization

Ours outperforms vanilla PointNet [1] on average mean loU metric when finding correspondences
between ground truth and predicted part segments in each shape (left). Note that PointNet uses
additional part label supervision. The average Mean |oU is still comparable when finding correspon-
dences between part labels and atom indices in each category (right).

PointNet | 1] Ours Ours (per shape)  Ours (per cat.)
ave. mloU 82.4 84.6 ave. mloU 84.6 /7.3
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Figure 1: Colors of part segments indicawze indices of atoms, which are consistent unless part geometries are not distin-
ouishable: e.g. shade of ceiling lamp and base of standing lamp (in circles).

Our framework can find synchronized atomic functions for which linear combination can approxi-
mate any random continuous function (left). Any information in one shape can be transferred to the
other shapes through the synchronized bases: e.g. parts (right).
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|Code] https://github.com/mhsung/deep-functional-dictionaries
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