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Fig. 1. Automatic shape synthesis via incremental component assembly. Note that a component and its placement is suggested automatically at every
iteration, given only a partial shape from the previous iteration.

Assembly-based tools provide a powerful modeling paradigm for non-expert
shape designers. However, choosing a component from a large shape repos-
itory and aligning it to a partial assembly can become a daunting task. In
this paper we describe novel neural network architectures for suggesting
complementary components and their placement for an incomplete 3D part
assembly. Unlike most existing techniques, our networks are trained on
unlabeled data obtained from public online repositories, and do not rely on
consistent part segmentations or labels. Absence of labels poses a challenge
in indexing the database of parts for the retrieval. We address it by jointly
training embedding and retrieval networks, where the first indexes parts
by mapping them to a low-dimensional feature space, and the second maps
partial assemblies to appropriate complements. The combinatorial nature of
part arrangements poses another challenge, since the retrieval network is
not a function: several complements can be appropriate for the same input.
Thus, instead of predicting a single output, we train our network to predict
a probability distribution over the space of part embeddings. This allows our
method to deal with ambiguities and naturally enables a UI that seamlessly
integrates user preferences into the design process. We demonstrate that
our method can be used to design complex shapes with minimal or no user
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input. To evaluate our approach we develop a novel benchmark for com-
ponent suggestion systems demonstrating significant improvement over
state-of-the-art techniques.
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1 INTRODUCTION
Geometric modeling is essential for populating virtual environments
as well as for designing real objects. Yet creating 3D models from
scratch is a tedious and time-consuming process that requires sub-
stantial expertise. To address this challenge, Funkhouser et al. [2004]
put forth the idea of re-using parts of existing 3D models to gener-
ate new content. To alleviate the burden of finding and segmenting
geometric regions, Chaudhuri et al. [2011] proposed an interface
for part-wise shape assembly, which reduces the user interaction to
component selection and placement. Their suggestion model was
trained on a heavily supervised dataset, where every shape was
segmented into a consistent set of parts with semantic part labels.
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Even at a very coarse part level, significant expense has to be in-
curred with the help of crowd-sourced workers and active learning
techniques [Yi et al. 2016].

In this work we propose a novel component suggestion approach
that does not require explicit part annotations. While our method
still requires unlabeled components, this is a much weaker require-
ment, as it has been observed before that these decompositions can
be done automatically [Chaudhuri et al. 2011]. In this work, we also
leverage the observation of Yi et al. [2017] that models that come
from online repositories, such as the 3D Warehouse [Trimble 2017],
already have some segmentations (based on connected components
and scene graph nodes) that often align with natural part bound-
aries. Despite the fact that these components are inconsistent and
unlabeled we can still train a model for component suggestion, be-
cause given some (partial) shape assembly we know exactly which
components are missing and where they need to be placed.
We propose novel neural network architectures for suggesting

complementary components and their locations given a partially
assembled shape. Our networks use unordered point clouds to repre-
sent geometry [Qi et al. 2017], which makes themwidely applicable1.
There are two main challenges in training the retrieval network.
First, since we do not require consistent segmentations and labels
our network needs to index the parts for retrieval. Thus, we jointly
train two networks, an embedding network that indexes the parts
by mapping them to a low-dimensional latent space, and a retrieval
network that maps a partial assembly to the appropriate subspace
of complements. These networks are trained together from triplets
of examples: a partial assembly, a correct complement, and an in-
correct complement. We use contrastive loss to ensure that correct
and incorrect complements are separated by a margin, which fa-
vors embeddings that are compatible with the retrieval network
predictions. The second challenge is that multiple design options
can complement each partial assembly (e.g., one can add either legs,
or a back, or arm rests to a seat of a chair). We address this chal-
lenge by predicting a probability distribution over the space of all
plausible predictions, which we model as a mixture of Gaussians
with confidence weights. This enables us to train a network that
suggests multiple plausible solutions simultaneously, even though
every training pair provides only one solution. Finally, the location
prediction network takes a partial assembly and a complementary
component and outputs possible placements for that component.

We demonstrate that our method leads to a modeling tool that re-
quires minimal or no user input. We also propose a novel benchmark
to evaluate the performance of component suggestion methods. In
that setting, our approach outperforms state-of-the-art retrieval
techniques that do not rely on heavily curated datasets.

2 RELATED WORK
We review related work on assembly-based modeling and recent
uses of neural networks for geometric modeling.

3D modeling by assembly. Funkhouser et al. [2004] pioneered the
idea of creating 3D models by assembling parts segmented from
shapes in a repository. Subsequent interfaces reduce the amount of

1In particular, this makes it possible to easily integrate our approach within other
extant design systems.

tedious manual segmentation by using a heavily curated repository
of objects pre-segmented into labeled parts [Chaudhuri et al. 2011;
Kalogerakis et al. 2012]. They proposed a probabilistic graphical
model to reason about which parts can complement one another.
Part assemblies can also be used to create plausible complete objects
from partial point clouds. For example, Shen et al. [2012] detect
and fill missing components by aligning the input to 3D models in
the database. Sung et al. [2015] fit structure templates to the partial
scan data to leverage both symmetry and part retrieval for comple-
tion. These part-based models rely on a database of consistently
segmented shapes with part labels, which limits the applicability of
these techniques as they incur significant data annotation costs [Yi
et al. 2016].

There are two notable exceptions. Jaiswal et al. [2016] used factor
graphs to model pairwise compatibilities when suggesting a new
part. Their suggestions are based only on pairwise relationships,
rendering this method less suitable for holistic reasoning. Chaudhuri
and Koltun [2010] proposed a method that retrieves partially similar
shapes and detect components that can be added to the existing
assembly. They assumed that the coarse shape is mostly complete,
so that global shape descriptors can reliably retrieve a structurally
similar model, and that part placement will not change significantly
from the retrieved model. While these techniques also do not require
part labels and consistent segmentations, unlike our approach, they
do not learn how to predict parts. There are several issues associated
with that. First, hand-crafted shape descriptors, parameters, and
weights that they use in their systems might have to be adapted
as one switches to new dataset. Second, it is challenging for these
systems to learn what a complete target shape in a particular cat-
egory looks like. In contrast, our method uses neural networks to
learn an appropriate shape representation to map a partial assembly
to complementary parts and their respective positions. It does not
require manual parameter tuning and can easily apply to a wide
range of shape categories.

Neural networks for 3D modeling. Several recent techniques use
neural networks formodeling 3D shapes. A direct extension of image
synthesis is 3D volume synthesis, where previous work explored
synthesizing volumes from depth [Wu et al. 2015a], images [Choy
et al. 2016; Grant et al. 2016], or both [Tulsiani et al. 2017]. Other
output 3D representations include skeletons [Wu et al. 2016a], graph-
based structures [Kong et al. 2017], and point clouds [Fan et al. 2017].
In this work we demonstrate that neural networks can also be

used for incremental interactive shape assembly from parts. Since
our geometry representation focuses on retrieving appropriate com-
ponents from the repository instead of synthesizing geometry from
scratch, we are able to create high fidelity 3D meshes.
Since our assembly process relies on training a component re-

trieval network, our method is also related to learning shape embed-
dings. Previous techniques learned embeddings for different pur-
poses: [Girdhar et al. 2016] for reconstructing 3D from 2D, [Sharma
et al. 2016] for denoising, [Wu et al. 2015b] for synthesizing shapes,
and [Li et al. 2017] for detecting hierarchical part structures. We in-
troduce a different embedding designed specifically for our retrieval
problem. Our approach jointly learns to embed complementing
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components that occur in similar context nearby, and learns to map
partial objects to their complements.

3 OVERVIEW
Incremental assembly-based modeling systems require two key tech-
nical components: part retrieval and part placement. In this work
we provide solutions to both of these problems. In particular, given a
partial object, ourmethod proposes a set of potential complementary
components from a repository of 3D shapes and a placement of each
component. The goal is to retrieve components that are compatible
with the partial assembly in style, functionality and other factors;
while simultaneously are as diverse as possible to leave more options
to the designer. We also need to predict positions for these com-
ponents so that they form a valid shape with the partial assembly.
These are challenging problems that require human-level under-
standing of objects, and thus we propose learning-based approaches
for generating these proposals.

Our first challenge is to obtain the training data: pairs of geome-
tries including a partial 3D assembly and potential complementing
components. We use the 3D models from ShapeNet [Chang et al.
2015], a large-scale online repository, to create these pairs. We first
need to decompose these objects into components, which form the
basic unit of our system. Unlike most previous works, we do not
require these decompositions to be consistent across shapes, have
explicit correspondences, or have labels. Similar to Chaudhuri et
al. [2011], we could use existing segmentation algorithms. However,
following the observation of Yi et al. [2017] we found that most
shapes in these repositories are composed of connected components
that mostly align with natural part boundaries. Thus, we propose a
simple data pre-processing procedure that merges small and repeti-
tive components, and uses the resulting larger parts. While we could
train directly on these parts by picking a subset of components and
trying to predict the rest, we found that it is very unintuitive to
predict a part that is not attached to the current assembly, and thus
use a proximity-based graph of the processed components to avoid
training on disconnected examples. We describe this step in more
details in Section 4.
We use this data to train a neural network for selecting com-

plementary components, and use point clouds to represent shape
geometry [Qi et al. 2017]. To train our network we pick a random
connected subgraph of components as input and use all remaining
components adjacent to the subgraph as training examples. For
example, given a single chair seat, a back, a leg, or arm-rests are all
correct suggestions. Furthermore, in practice any of these parts in
the style that is compatible to the seat can be valid retrievals. This
means that the mapping from our inputs X to the outputs Y is not
a function since it has multiple output values, and thus cannot be
modeled with a simple regression.
In this work we address two fundamental challenges associated

with the retrieval problem: how to model ambiguity in retrievals
and how to index parts. To address the first challenge we propose
a retrieval network architecture that produces a conditional proba-
bility distribution P (Y |X ) modeled as a Gaussian mixture for the
output. Our network is designed based on the Mixture Density
Network [Bishop 1994]. This method enables us to retrieve a di-
verse set of plausible results, as detailed in Section 5.1. To address

the second challenge we learn a low-dimensional embedding of all
parts to encode the retrieved result Y . Then, proposing new compo-
nents corresponds to sampling a few coordinates in this embedding
space according to P (Y |X ). While one could use a fixed embedding
space (e.g., based on shape descriptors), we learn this embedding
by training an embedding network that aims to embed compatible
complementary parts that share functional and stylistic features
nearby (Section 5.2). We use a form of contrastive loss to jointly
train the retrieval and embedding networks (Section 5.3).

Finally, we address the challenge of placing the retrieved part in
the context of the partial query by training a regression placement
network that uses both the partial object and a complementary
component as an input and the true position of the component as a
training example (Section 5.4).

During the incremental assembly design, we first run our retrieval
network to obtain a set of high-probability components, and then
run the placement network on each component to generate a gallery
of potential assembly candidates placed with respect to the input
object (see Figure 2).

4 DATA PREPROCESSING
Given a database of shapes the goal of this step is to decompose
them into components and construct contact graphs over the com-
ponents. We can partition this graph in various ways to create
training pairs of a partial assembly (connected subgraph) and its
complements (nodes adjacent to the subgraph). This step has loose
requirements, since subsequent steps do not require these compo-
nents to be consistent or labeled. That said, it is desirable for these
components to have non-negligible size so that adding themmakes a
visible difference to the assembly, and have their boundaries roughly
align with geometric features to avoid visual artifacts in stitching
the parts together. Larger components also aid in learning a more
meaningful and discriminative embedding space. Thus, we start
with an over-segmentation where each component has reasonable
boundaries and then iteratively merge small components. While we
could use an automatic segmentation algorithm such as random-
ized cuts [Golovinskiy and Funkhouser 2008] to produce the initial
components, we found ShapeNet models are already represented
by scene graphs where leaf geometry nodes provide reasonable
components with minimal post-processing.
We first construct an initial contact graph by creating an edge

between any two components such that the minimum distance be-
tween them is less than τproximity = 0.05 of their radius. We then
choose a set of nodes to merge into a single component based on
three criteria: size, amount of overlap, and similarity. Specifically,
any component with PCA-aligned bounding box diagonal below
τsize = 0.2 of mesh radius is merged to its largest neighbor. Also,
overlapping components with directional Hausdorff distance below
τHausdorff tol = 0.05 (in either direction) are merged into the same
group. Finally, identical components that share the same geometry
in the scene graph or with identical top/front/side grayscale ren-
derings are treated as a single component. The last merge favors
placing all symmetric parts at once, which we found to be more
time effective from the user perspective (e.g., think of placing every
slat separately to form a back). The output of these merges is a new
contact graph and we synthesize training pairs by partitioning this
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Fig. 2. Overview of the retrieval process at test time. From the given partial assembly, the retrieval network predicts a probability distribution (modeled as a
mixture of Gaussians) over the component embedding space. Suggested complementary components are sampled from the predicted distribution, and then
the placement network predicts their positions with respect to the query assembly.

graph in different ways (Section 5.3). We only use graphs that have
at most Nmax CC = 8 components during training. We demonstrate
the effect of these pre-processing steps in Figure 3 and statistics
over our training data in Figure 6.

For our retrieval and placement networks we represent our com-
ponents with Npoints = 1000 randomly sampled points re-centered
at the origin.

5 METHOD
The input to our method is a partial shape and the output are several
component proposals selected from the database that can be added
next. We design several neural networks to facilitate the proposal:
a retrieval network д, an embedding network f , and a placement
network h. While our networks can be re-targeted to deal with any
3D shape representation such as voxel grids or multi-view projec-
tions we chose to represent all input shapes with point clouds [Qi
et al. 2017] which are versatile representations that can be used on
a wide range of geometries.

To index parts we build an embedding space for all components,
where interchangeable and stylistically compatible components are

Fig. 3. This figure illustrates our pre-processing step, where the image on
the left depicts input connected components, and image on the right are
the nodes are the final components (after small, overlapping, and repetitive
elements are grouped together).
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Fig. 4. Neural networks architectures. (a) PointNet [Qi et al. 2017] (provided
for completeness). The numbers in MLP (Multi-Layer Perception) are layer
sizes. In our use, we omit spatial transformer networks and assume that
orientations are pre-aligned (Section 5.4). (b) the joint training framework
of both retrieval and embedding networks. (c) the placement network.

embedded nearby. We represent this space with a neural network f
that takes part geometry and maps it to low-dimensional vector. The
retrieval network and embedding network are tightly coupled. The
retrieval network д takes geometry of a partial query as an input,
and outputs a probability distribution over the low-dimensional
embedding learned by f (see Figure 2).
A good embedding needs to provide a space that is easy to rep-

resent with the output of the retrieval network. Thus, we jointly
train both networks with triplets: a partial shape, one of its comple-
ments, and a non-complementing part. We then separately train a
placement network h that takes geometry of the query shape and a
retrieved complement and outputs placement coordinates for the
component.
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Fig. 5. A triplet of the query partial assembly X , a positive sample Y , and a
negative sample Z becomes an instance of the training data. Function f ( ·)
maps Y and Z to single points on the embedding space, and function д ( ·)
generates Gaussian mixture distribution on the space from X . See Section
5.3 for details.

5.1 Retrieval Network
Given a partially assembled shape our goal is to retrieve a set of
complementary parts.
Our input partial assembly X is represented as a point cloud

of Npoints points. Note that any partial shape X can have several
complementary parts, thus instead of predicting a unique coordinate,
Yc , we predict a conditional distribution over the embedded space,
P (Yc |X ). We model P (Yc |X ) as a mixture of Gaussians, defined on
someD−dimensional embedding space, i.e.,Yc ∈ RD (whereD = 50
in all experiments).
We predict the distribution by mixture density network (MDN)

[Bishop 1994], which essentially predicts the parameters of the
Gaussian mixture. For the mixture of Gaussians, we use NGM =
Nmax CC modes in our model, set to maximal number of connected
components, and represent each kth Gaussian with a weight ϕk ∈ R,
a mean µk ∈ R

D , and a standard deviation σk ∈ R
D .

To take unordered points as input we use the PointNet net-
work [Qi et al. 2017] as the backbone structure, which leverages sym-
metric (order-independent) functions to map points to categories
(see Figure 4a). To predict probability distribution over the embed-
ded space we replace classification output layers with parameters of
Gaussian mixture model: д(X ) = {ϕk (X ), µk (X ),σk (X )}k=1..NGM ,
where д is a PointNet architecture. Each of weights, means, and
standard deviations are mapped from the feature of the input with
a single fully connected layer for each with different activations:
softmax for weights to make sum one, exponential for variances to
constrain them to be positive, and linear for means.

It is worth mentioning that, the modeling of a conditional distribu-
tion over neural network output is an active research field recently,
and our choice of MDN as the tool is mainly due to its significantly
better performance to capture multiple modes. In principle, recent
techniques such as conditional GAN [Mirza and Osindero 2014] or
conditional VAE [Kingma et al. 2014; Sohn et al. 2015] can also be
used here; however, it is well-known that these approaches are still
unapt to capture multiple modes well, suffering from a phenomenon
known as mode collapse.

5.2 Embedding Network
The next step is to design the embedding network f that takes a
shape and maps it to the D−dimensional embedding space. Since
the retrieval network works by predicting a coordinate in the space
and selecting candidates by proximity search, nearby components
have to be interchangeable when they are added to some partial
object assemblies. A naive approach would be to use some fixed em-
bedding (e.g., PCA) based on any shape features (e.g., deep learned
classification features [Su et al. 2015b]). The disadvantage of this
approach is that embedding is created independently from the pre-
diction network д, so we cannot expect complementary parts to be
captured well with the Gaussian Mixture model. Thus, we propose
to learn the embedding space jointly with the network д. To do this
we use a PointNet architecture to represent function f (Y ) that maps
the point cloud of a component Y to its embedding coordinates Yc .
Learning the embedding function f enables us to create an embed-
ding space that tightly clusters candidate complements that share
stylistic and functional attributes.

5.3 Joint Training for Retrieval and Embedding
We now describe how to jointly train the retrieval and embedding
networks using our pre-processed dataset.

Loss function. Our loss is a triplet contrastive loss. Given some
positive example of a partial assemblyX and its complementing part
Y , we need to define an appropriate loss function to be able to learn
optimal parameters for networks f and д. We define it as a negative
log likelihood that Y is sampled from the probability distribution
predicted by д(X ), P (Y |X ):

E (X ,Y ) = − log
NGM∑
k=1

ϕk (X )N ( f (Y ) | µk (X ),σk (X )2). (1)

See Appendix for an expanded form. Directly optimizing for pa-
rameters of д and f with respect to Equation 1, however, would
collapse the embedding space to a single point, i.e., the optimal value
is attained when f contracts to a single point [Hadsell et al. 2006].
Thus, we introduce a negative example, component Z that does not
complementX , to avoid the contraction of f . We now use the triplet
(X ,Y ,Z ) to define a contrastive loss [Chechik et al. 2010]:

E (X ,Y ,Z ) = max{m + E (X ,Y ) − E (X ,Z ), 0}, (2)

wherem = 10 is a constant margin set for all experiments.
Figure 4b shows the final version of the network for the compo-

nent embedding with the contrastive loss. The subnetworks pro-
cessing X , Y , and Z have the same PointNet structure, but only the
subnetworks of Y and Z share parameters.

Training. To generate the training triplet (X ,Y ,Z ) we use the
components in the pre-processed contact graphs described in Sec-
tion 4. We first pick a random shape. Suppose its contact graph has
n nodes, we then pick a random value r ∈ [1,n] and create a ran-
dom subgraph with r nodes. To do that we pick a random node and
iteratively add a random unvisited adjacent node until we create
a connected subgraph graph of size r . We sample Npoints on the
included components to obtainX (note that these points are defined
in global coordinate system of the object). We then pick a random
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unvisited component that is adjacent to the selected subgraph X to
define Y , and a random non-adjacent component (including compo-
nents from other shapes) to define Z (note that Y ,Z are represented
by Npoints centered at the origin).

We train the retrieval network for 2000 epochs with batch size 32.
We use ADAM optimizer [Kingma and Ba 2014] with 1.0E − 3 initial
learning rate and 0.8 decay rate for 50k decay steps. Each epoch
iterates all 3D models in the training set while randomly sampling
the query subgraph X , and positive/negative components Y and Z .
In MDN, the standard deviations σk (X ) easily diverges to the inf
since this leads to − inf loss. Hence, we set the upper limit of σk (X )
to 0.05.

5.4 Placement Network
The retrieval network predicts a probability on the embedding space.
We can accordingly propose new components to be selected for in-
teractive or fully-automatic model design. Suppose that Y is the
selected new component given a partial object X . The placement
network h predicts 3D coordinates for the component Yp = h(X ,Y ).
We assume that only translation needs to be predicted and orient Y
the same way as it was oriented in the source shape. We use two
independent PointNet networks to analyze point clouds X and Y ,
concatenate the features from these two networks, and add multi-
layer perceptron layers to obtain 3D coordinates Yp (Figure 4c). We
use the same training data samples (X ,Y ) as in training the retrieval
network.

6 RESULTS
We demonstrate interactive and automatic modeling tools that can
leverage our method. We also quantitatively evaluate our method
and compare to the state-of-the-art alternatives.

Dataset. We test our method with 9 categories from ShapeNet
repository [Chang et al. 2015]: Airplane, Car, Chair, Guitar, Lamp,
Rifle, Sofa, Table, and Watercraft. We picked diverse categories with
interesting part structures and enough instances to provide useful
training data. Our pre-processing produces a few components per
shape and we disregard shapes that have only 1 or more than 8
components (see Figure 6 for details). An interactive modeling or a
shape synthesis tool performs the best if they leverage the entire
dataset, so the qualitative results provided in Section 6.1 are trained
on the entire dataset. For quantitative evaluations and comparisons
for various retrieval and placement algorithms we randomly split
every category into 80% for training and 20% for test sets and report
quantitative results and qualitative comparisons on test sets only
(Section 6.2).

6.1 Assembly-Based Geometric Modeling
We first evaluate our method qualitatively for interactive and auto-
matic shape modeling.

Interactive Modeling. We use our retrieval and placement net-
works in an interactive modeling interface. Given a partial assembly,

Fig. 6. Histograms of numbers of components. The number next to the cate-
gory name is the total number of models we used in experiments (including
train/test), and the next line is the numbers of discarded models which have
less than two or greater than eight components.

our algorithm first proposes a set of possible components by sam-
pling from the conditional probability distribution predicted by the
retrieval network and shows the candidates in our UI.
Then, the user selects a desired com-
plementary component, and the al-
gorithm predicts the location for it
via the placement network. The new
shape is synthesized for the user, and
the next component is proposed. Re-
fer to the supplemental video for sev-
eral interactive sessions.

Automatic Shape Synthesis. Our method can also be used to facili-
tate a fully automatic shape synthesis that is able to generate diverse
designs. We simply start with a random component, and iteratively
add a component by sampling from the predicted distribution. Fig-
ure 7 shows the evolution of the model when the component with
maximal probability is added at every iteration. The retrieval net-
work successfully finds new components that are missing in the
query and can be connected to the given partial assembly. At each
step, one can also make various decisions by taking different com-
ponents from the sampling, so in Figure 8 we show a binary tree
of possibilities. Note that in various content creation scenarios one
can use this to control the complexity of resulting models (based on
the depth of the tree) and diversity of the resulting models (based
on the breadth of the tree).

6.2 Quantitative Evaluations and Comparisons
Evaluating an assembly-based geometric modeling tool is a challeng-
ing problem since there is no well-established protocol. In particular,
evaluating the whole end-to-end object design process relies on sub-
jective user evaluations which is prone to bias (e.g., the modeling
task can be geared to favor a particular method). We thus propose a
benchmark that evaluates various aspects of our core contributions:
complement retrieval, part embedding, and part placement.

Evaluating whether retrieved parts are compatible with the query
partial shape is not a trivial task, since compatibility is a subjec-
tive criterion. We propose to evaluate functional, geometric, and
stylistic compatibilities with separate metrics outlined in the fol-
lowing paragraphs. For each criterion, we compare our result to a
random suggestion baseline and two state-of-the-art alternatives.
First is the method of Chaudhuri and Koltun [2010] (CK10) that
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Fig. 7. Automatic iterative assembly results from a single component. Small component not typically labeled with semantics in the shape database (e.g. as
slats between chair/table legs, pillows on sofas, cords in lamps/watercrafts) are appropriately retrieved and placed.

also does not require a database of labeled parts and thus is directly
comparable with our input. Their method operates in two steps:
they find shapes that are similar to the query using global shape
descriptors, and then pick components in the retrieved shapes that
are dissimilar from the components in the query. Second, to test the
value of our embedding, we replace our joint training of embedding
network f and retrieval networks д with a fixed embedding space
from MVCNN [Su et al. 2015b] (i.e., only д is trained in this case).
More specifically, we extract the last layer of MVCNN and use PCA
to project it to a 50-dimensional space.

We also evaluate the part placement network and present quanti-
tative results to enable future comparisons.

Functional compatibility. To answer the question whether a re-
trieved part is functionally compatible with the partial query, we
rely on existing segmentation benchmark with part labels that refer
to their functionality (e.g., an airplane can include four functional
parts: a body, an engine, a tail, and wings). We then remove a single
part from the query shape and evaluate how many of the retrieved
components have correct labels.

In this experiment we use part labels in the ShapeNet dataset [Yi
et al. 2016]. Since this dataset provides per-point labels rather than
isolated components we first label connected components and group
them into bigger parts. In particular, we use majority voting to label
each connected component, and then group all components with
the same label into a single part. We disregard shapes if they have
the final labeled part covering less than 80% of the labeled points
in the dataset (we use 3396 out of 8670 models in this evaluation).
This provides us with a database of shapes that are decomposed
into consistent semantic parts. Note that this is very different from
our training components obtained after database preprocessing in
Section 4 which are inconsistent and unlabeled. We do not use these
labeled components for training, but only use them to create the
query shapes and component database in this experiment.

In this experiment, we report numbers on 6 categories for which
ShapeNet has part annotations out of the 9 categories we tested.
We generate 100 queries for each category. For each query, we
exclude a randomly chosen part for each shape and measure the
mean average precision scores (mAPs) of the top 5 retrieval results
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Fig. 8. Automatic iterative assembly with two different random choices at every time. From the initial component at the bottom, various objects are synthesized
by assembling different components.

(where a result is considered to be correct if the part label matches
the label of excluded part). We present quantitative results in Table 1
demonstrating that our method outperforms CK10 on all categories,
except guitars, where bothmethods performwell due to very regular
structure of the shape.

Table 1. Evaluating functional labels of retrieved parts, this table reports
mean average precision for top 5 retrievals across different methods and
categories.

Category Plane Car Chair Guitar Lamp Table Mean

Random 0.41 0.40 0.42 0.51 0.49 0.63 0.48
CK10 0.37 0.39 0.37 1.00 0.52 0.64 0.55

Ours (MVCNN) 0.70 0.71 0.80 0.93 0.74 0.88 0.79
Ours (Joint) 0.89 0.55 0.86 0.95 0.73 0.91 0.81

Geometric compatibility. Even if a retrieved part has correct la-
bel, it might not fit well with the query shape. While it is hard to
evaluate geometric compatibility, we resort to comparing geometry
of the retrieved part and the original part that was excluded from
the assembly. We use the same experimental setup as in evaluating
functional compatibility, but measure the average Hausdorff dis-
tance between the original and top 5 retrieved parts (Table 2). The
distances are relative to the shape radius which is scaled to 1. Note
that our method returns parts that are more similar to the original
complement than parts returned by CK10. Similar to functional
compatibility metric, we found that our method performed slightly
worse on guitars, where global shape descriptors might be mostly
appropriate to capture guitar shapes.
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Table 2. Evaluating geometric compatibility, this table report average Haus-
dorff distances of top-5 retrievals with the ground truth missing parts. Note
that all models are normalized to have unit radius.

Category Plane Car Chair Guitar Lamp Table Mean

Random 0.27 0.24 0.27 0.14 0.30 0.36 0.26
CK10 0.23 0.21 0.27 0.04 0.25 0.34 0.23

Ours (MVCNN) 0.15 0.15 0.19 0.05 0.22 0.27 0.17
Ours (Joint) 0.11 0.21 0.16 0.05 0.21 0.24 0.16

Style compatibility. Our next goal is to evaluate whether the re-
trieved component is compatible to the query in style. While this
is not a well-formulated problem, for the purpose of evaluation we
use ShapeNet taxonomy to reason about finer-grained classes, since
such fine-grained classes are often defined by style (e.g., chair’s
find-grained classes are club chair, straight chair, lounge chair, re-
cliner, etc). In particular, we consider a retrieved part to be accurate
if it is from a shape in the same fine-grained class. While this is
generally an imperfect measure (e.g., car wheels are interchangeable
between convertibles and jeeps and table legs are interchangeable
between rectangular tables and round tables, even though global
fine-grained labels are different), we found that this measure does
correlate with style compatibility of query and target shape, and
nicely complements other measures. We evaluate style compatibility
on 6 categories that have various fine-grained classes.
We test two extremes: only one part is missing from the query,

and only one part is present in the query. One issue is that the
fine-grained categories of ShapeNet models do have overlaps, i.e.,
one model may have multiple fine-grained class labels (e.g. club
chair and armchair), and thus the subclasses are considered to be
matched if there is any overlap between the sets of subclasses of
the query and the retrieval results.
Table 3 shows mAPs of top 5 retrieval results. Our method per-

forms better when only one part is given, suggesting that it can
capture stylistic compatibility with very little information. However,
we found that global shape descriptors used by CK10 perform better
at retrieving stylistically similar shape when the query has almost
the complete shape. It is worth noting that our method has more
disadvantage under this metric. We introduce an embedding space
and in it components from different fine-grained categories may
be near each other (the car wheel example before). However, the
CK10 approach tends to find a shape very similar to the query in
the all-expect-one setting, with a high chance to be from the same
fine-grained category. Note that this metric only reasons about style
of the global shape, even if individual retrieved parts look identical.

Comparison to Chaudhuri and Koltun [2010] (CK10). Previouslywe
mentioned that CK10 relies on hand-crafted global shape descriptors
to retrieve the most similar shape, and then propose parts that are
dissimilar to the parts in the query. In contrast, our method learns
to predict the descriptor of a complement from the query, which
is a more direct method. We also use neural networks for this task,
which enable our approach to leverage large datasets as they become
available. We demonstrate some qualitative results in Figure 9.

Effect of learning the embedding. We also evaluate the influence of
using fixed embedding space instead of learning the embedding. In

Table 3. Evaluating style compatibility, this table reports mAP for fine-
grained style categories of retrieved components.

Category Plane Car Chair Sofa Table Ship Mean

Random 0.65 0.28 0.50 0.38 0.37 0.50 0.50

All except one

CK10 0.79 0.80 0.83 0.84 0.71 0.75 0.79
Ours (MVCNN) 0.76 0.32 0.67 0.52 0.47 0.56 0.60
Ours (Joint) 0.78 0.34 0.65 0.67 0.49 0.59 0.62

Single

CK10 0.51 0.44 0.52 0.56 0.44 0.54 0.49
Ours (MVCNN) 0.71 0.29 0.64 0.54 0.46 0.53 0.58
Ours (Joint) 0.72 0.26 0.64 0.59 0.52 0.59 0.59

Table 4. Placement Network Error. Note that all models are normalized to
have unit radius.

Category Plane Car Chair Guitar Lamp Rifle Sofa Table Ship Mean

Train Err 0.02 0.03 0.06 0.02 0.04 0.02 0.04 0.06 0.03 0.04
Test Err 0.06 0.13 0.13 0.03 0.20 0.14 0.12 0.15 0.19 0.12

particular, we pick MVCNN descriptor as one of the state-of-the-art
deep learned shape descriptors and train only the retrieval network
д, while f is prescribed by the PCA transformation of the MVCNN
descriptor in the training data.

Evaluated by part label and style prediction metrics, Table 1 and
Table 3 show that our method based on the learned embedding
works on par or slightly better than the feature space from MVCNN.

Qualitatively, we find that the learned embedding often exhibits
larger diversity orthogonal to the appearance similarity captured
by MVCNN. In Figure 10, we visualize our learned embedding space
and observe such diversity by our learned embedding. For example,
the returned table legs in the third row differ greatly in shape but
are all reasonable components to be added to the partial assembly.

Part placement evaluation. A unique advantage of our method
over CK10 and existing approaches is its ability to predict part
placement purely from the geometry of the new component. Table
4 shows the placement error on both training and testing data,
where the error is measured relative to shapes with the unit radius.
Note that all models in the database are normalized to have unit
radius from the bounding box center. In all categories, our placement
network predicts positions with reasonably small errors.

Cross-category assembly. Lastly, we test to our method to assem-
bly components in a different category with the trained models.
Figure 11 demonstrates some results of cross-category automatic
synthesis. We achieve reasonable outputs when using categories
sharing many similar components (e.g., table - sofa - chair). Note
that some components are even used with different functionalities
such as table legs as chair arms and a back. Obviously, it is not
possible to obtain plausible outputs when there is no commonality
among component shapes (e.g., airplane - watercraft - car), but still
the outputs show meaningful mappings such as a watercraft body
to an airplane body and a watercraft sail to a airplane tail wing.
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Fig. 9. Part retrieval comparisons. The left is query shape with a missing component (blue is missing). The three rows on the right are top-5 retrieval results of
CK10, ours with MVCNN embedding, and ours with joint embedding, respectively. The retrieved components are highlighted with light green and pink; light
greens are correct, and pinks are wrong parts.

Timing. We ran both training and test with a single NVIDIA
GeForce GTX TITAN X Graphics Card. It took 12 hours to train
each of the retrieval/embedding networks and placement networks
for 100k iterations. In test time, each of the retrieval and placement
network takes 0.1 second.

7 CONCLUSION
We propose a novel method for retrieving and placing complemen-
tary parts for assembly-based modeling tools. Our method does not
require consistent segmentation and part labeling, and it can learn
from a non-curated and inconsistent oversegmentation of shapes in
an online repository. We jointly learn how to predict complemen-
tary parts and how to organize them in a low-dimensional manifold.
This enables us to retrieve parts that have good functional, geo-
metric, and stylistic compatibility with the query shape. We also
propose the first method to predict target part position just from
their normalized geometry.

Our framework has some limitations. While we randomly sample
points over the surface of the partial input shape so that larger
components have bigger influences in the next component retrieval,
sometimes small/thin components play roles as certain parts, de-
ciding the style of the whole object and occupying certain areas.

Thus, the retrieval network can result in unreasonable outputs when
these components are not well taken into account. In Figure 12, the
automatically synthesized shapes have conflicted and unmatched
components. Our placement network may also break physical con-
straints and have the new component to float or overlap with the
input components. These issues, however, can be easily fixed with
the user interaction.
In the future, we plan to augment our method with capabilities

to synthesize and deform retrieved parts, providing an even better
compatibility with the query. For any practical interactive interface,
it is essential to also provide additional user control beyond part
selection: for example, enabling specifying high-level part attributes,
rough shapes, and rough placements.
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A APPENDIX
Equation 1 is expanded as follows:

E (X ,Y )

= − log
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,

where xd is the d-th dimension value of x . This leads to a log-
sum-exp formulation, which requires the following computation
trick for avoiding numerical issues:

log
∑
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k

(xk ) + log
∑
k

exp
[
xk −max

k
(xk )

]
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